- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dickey, Michael_D (2)
-
Krisnadi, Febby (2)
-
Vong, Man_Hou (2)
-
Awartani, Omar_M (1)
-
Chacko, Dennis (1)
-
Im, Sooik (1)
-
Kim, Seoyeon (1)
-
Kong, Minsik (1)
-
Ma, Jinwoo (1)
-
Park, Sungjune (1)
-
Rykaczewski, Konrad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Pastes and “foams” containing liquid metal (LM) as the continuous phase (liquid metal foams, LMFs) exhibit metallic properties while displaying paste or putty‐like rheological behavior. These properties enable LMFs to be patterned into soft and stretchable electrical and thermal conductors through processes conducted at room temperature, such as printing. The simplest LMFs, featured in this work, are made by stirring LM in air, thereby entraining oxide‐lined air “pockets” into the LM. Here, it is reported that mixing small amounts of water (as low as 1 wt%) into such LMFs gives rise to significant foaming by harnessing known reactions that evolve hydrogen and produce oxides. The resulting structures can be ≈4–5× their original volume and possess a fascinating combination of attributes: porosity, electrical conductivity, and responsiveness to environmental conditions. This expansion can be utilized for a type of 4D printing in which patterned conductors “grow,” fill cavities, and change shape and density with respect to time. Excessive exposure to water in the long term ultimately consumes the metal in the LMF. However, when exposure to water is controlled, the metallic properties of porous LMFs can be preserved.more » « less
-
Ma, Jinwoo; Krisnadi, Febby; Vong, Man_Hou; Kong, Minsik; Awartani, Omar_M; Dickey, Michael_D (, Advanced Materials)Abstract This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non‐spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e‐skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.more » « less
An official website of the United States government
